114 research outputs found

    Gap functions for quasi-equilibria

    Get PDF
    An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimate of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool to guarantee that all the stationary points of a gap function actually solve QEP. A few classes of constraints satisfying such assumptions are identified covering a wide range of situations. Relying on these results, a descent method for solving QEP is devised and its convergence proved. Finally, error bounds are given in order to guarantee the boundedness of the sequence generated by the algorithm

    Twelve monotonicity conditions arising from algorithms for equilibrium problems

    Get PDF
    In the last years many solution methods for equilibrium problems (EPs) have been developed. Several different monotonicity conditions have been exploited to prove convergence. The paper investigates all the relationships between them in the framework of the so-called abstract EP. The analysis is further detailed for variational inequalities and linear EPs, which include also Nash EPs with quadratic payoffs

    Descent and penalization techniques for equilibrium problems with nonlinear constraints

    Get PDF
    This paper deals with equilibrium problems with nonlinear constraints. Exploiting a gap function recently introduced, which rely on a polyhedral approximation of the feasible region, we propose two descent methods. They are both based on the minimization of a suitable exact penalty function, but they use different rules for updating the penalization parameter and they rely on different types of line search. The convergence of both algorithms is proved under standard assumptions

    Auxiliary problem principles for equilibria

    Get PDF
    The auxiliary problem principle allows solving a given equilibrium problem (EP) through an equivalent auxiliary problem with better properties. The paper investigates two families of auxiliary EPs: the classical auxiliary problems, in which a regularizing term is added to the equilibrium bifunction, and the regularized Minty EPs. The conditions that ensure the equivalence of a given EP with each of these auxiliary problems are investigated exploiting parametric definitions of different kinds of convexity and monotonicity. This analysis leads to extending some known results for variational inequalities and linear EPs to the general case together with new equivalences. Stationarity and convexity properties of gap functions are investigated as well in this framework. Moreover, both new results on the existence of a unique solution and new error bounds based on gap functions with good convexity properties are obtained under weak quasimonotonicity or weak concavity assumptions

    D-gap functions and descent techniques for solving equilibrium problems

    Get PDF
    A new algorithm for solving equilibrium problems with differentiable bifunctions is provided. The algorithm is based on descent directions of a suitable family of D-gap functions. Its convergence is proved under assumptions which do not guarantee the equivalence between the stationary points of the D-gap functions and the solutions of the equilibrium problem. Moreover, the algorithm does not require to set parameters according to thresholds which depend on regularity properties of the equilibrium bifunction. The results of preliminary numerical tests on Nash equilibrium problems with quadratic payoffs are reported. Finally, some numerical comparisons with other D-gap algorithms are drawn relying on some further tests on linear equilibrium problems

    Gap functions for quasi-equilibria

    Get PDF
    An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimates of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool to guarantee that all the stationary points of a gap function actually solve QEP. A few classes of constraints satisfying such assumptions are identified covering a wide range of situations. Relying on these results, a descent method for solving QEP is devised and its convergence proved. Finally, error bounds are given in order to guarantee the boundedness of the sequence generated by the algorithm

    Approximate optimality conditions and stopping criteria in canonical DC programming

    Get PDF
    In this paper, we study approximate optimality conditions for the Canonical DC (CDC) optimization problem and their relationships with stopping criteria for a large class of solution algorithms for the problem. In fact, global optimality conditions for CDC are very often restated in terms of a non-convex optimization problem, which has to be solved each time the optimality of a given tentative solution has to be checked. Since this is in principle a costly task, it makes sense to only solve the problem approximately, leading to an inexact stopping criteria and therefore to approximate optimality conditions. In this framework, it is important to study the relationships between the approximation in the stopping criteria and the quality of the solutions that the corresponding approximated optimality conditions may eventually accept as optimal, in order to ensure that a small tolerance in the stopping criteria does not lead to a disproportionally large approximation of the optimal value of the CDC problem. We develop conditions ensuring that this is the case; these turn out to be closely related with the well-known concept of regularity of a CDC problem, actually coinciding with the latter if the reverse-constraint set is a polyhedron

    Outer Approximation Algorithms for Canonical DC Problems

    Get PDF
    The paper discusses a general framework for outer approximation type algorithms for the canonical DC optimization problem. The algorithms rely on a polar reformulation of the problem and exploit an approximated oracle in order to check global optimality. Consequently, approximate optimality conditions are introduced and bounds on the quality of the approximate global optimal solution are obtained. A thorough analysis of properties which guarantee convergence is carried out; two families of conditions are introduced which lead to design six implementable algorithms, whose convergence can be proved within a unified framework

    Existence and solution methods for equilibria

    Get PDF
    Equilibrium problems provide a mathematical framework which includes optimization, variational inequalities, fixed-point and saddle point problems, and noncooperative games as particular cases. This general format received an increasing interest in the last decade mainly because many theoretical and algorithmic results developed for one of these models can be often extended to the others through the unifying language provided by this common format. This survey paper aims at covering the main results concerning the existence of equilibria and the solution methods for finding them

    Differentiated oligopolistic markets with concave cost functions via Ky Fan inequalities

    Get PDF
    A model for Nash-Cournot oligopolistic markets with concave cost functions and a differentiated commodity is analysed. Equilibrium states are characterized through Ky Fan inequalities. Relying on the minimization of a suitable merit function, a general algorithmic scheme for solving them is provided. Two concrete algorithms are therefore designed that converge under suitable convexity and monotonicity assumptions. The results of preliminary numerical tests on randomly generated markets are also reported
    corecore